您的位置:网站首页 > net源码 > 正文

Faiss:Facebook开源的相似性搜索类库

类别:net源码 日期:2018-5-15 0:19:51 人气: 来源:

  Facebook在今年3月份发布了Facebook AI相似性搜索(简称Faiss)项目,该项目提供的类库可以从多文档中快速搜索出相似的条目这个场景下的挑战是基于查询的传统搜索引擎无决的。Facebook 人工智能实验室(FAIR)基于十亿级别的数据集构建了最近邻搜索算法的实现,这比之前介绍的已知文献中在GPU上实现的最先进且最快的k-selection算法还要快大约8.5倍,因此创造了新的记录,包括第一个基于十亿高维向量构建的k最近邻图。

  传统的数据库是由包含符号信息的结构化数据表组成。比如,一个图片集可以表示为一个数据表,每行代表一个被索引的图片,包含图片标识符和描述文字之类的信息;每一行也可以与其他数据表中的实体关联起来,比如某个用户的一张图片可以与用户姓名表建立关联。

  像文本嵌入(word2vec)或者卷积神经网络(CNN)描述符这样通过深度学习训练出的AI工具,都可以生成高维向量。这种表示远比一个固定的符号表示更加强大和灵活,正如后文将解释的那样。然而使用SQL查询的传统数据库并不适用这些新的表示方式。首先,海量多信息的涌入产生了数十亿的向量;其次,且更重要的是,查找相似实体意味着查找相似的高维向量,如果只是使用标准查询语言这将非常低效和困难。

  假设有一张建筑物的图片比如某个你不记得名字的中等规模城市的市政大厅然后你想在图片集中查找所有该建筑物的图片。由于不记得城市的名字,此时传统SQL中常用的key/value查询就帮不上忙了。

  这就是相似性搜索的用武之地了。图片的向量化表示旨在为相似的图片生成相似向量,这里相似向量定义为欧氏距离最近的向量。

  向量化表示的另一个应用是分类。假设需要一个分类器,来判定某个相册中的哪些图片属于菊花。分类器的训练过程众所周知:给算法分别输入菊花的图片和非菊花的图片(比如汽车、羊、玫瑰、矢车菊等);如果分类器是线性的,那么就输出一个分类向量,其属性值是它与图片向量的点积,反映了该图片包含菊花的可能性;然后分类器可以与相册中所有图片计算点积,并返回点积最大的图片。这种查询就是“最大内积”搜索。

  现有软件工具都不足以完成上述数据库检索操作。传统的SQL数据库系统也不太适合,因为它们是为基于哈希的检索或1维区间检索而优化的;像OpenCV等软件包中的相似性搜索功能在扩展性方面则严重受限;同时其他的相似性搜索类库主要适用于小规模数据集(比如,1百万大小的向量);另外的软件包基本是为发表论文而输出的学术研究产物,旨在展示某些特定设置下的效果。

  一旦从学习系统(从图片、视频、文本文件以及其他地方)抽取出向量,就能准备将其用于相似性搜索类库。

  我们有一个算法作为参考对比,该算法计算出了所有的相似度非常精确和齐全然后返回最相似的元素列表。这就提供了一个黄金标准的参考结果列表。需要注意的是,算法的高效实现并不简单,一般依赖于其他组件的性能。

  如果一些精度的话,比如允许与参考结果有一点点偏差,那么相似性搜索能快几个数量级。举个例子,如果一张图片的相似性搜索结果中的第一个和第二个交换了,可能并没有太大问题,因为对于一个给定的查询,它们可能都是正确结果。加快搜索速度还涉及到数据集的预处理,我们通常把这个预处理操作称作索引。

  。找到与查询最相似的10个或更多个向量要耗时多久?期望比算法耗时更少,不然索引的意义何在?

  。该方法需要消耗多少RAM?比原始向量更多还是更少?Faiss支持只在RAM上搜索,而磁盘数据库就会慢几个数量级,即便是SSD也是一样。

  。返回的结果列表与搜索结果匹配程度如何?精确度可以这样评估,计算返回的真正最近邻结果在查询结果第一位(这个指标一般叫做1-recall@1)的数量,或者衡量返回结果前10个(即指标10-intersection)中包含10个最近邻结果的平均占比。

  通常我们都会在确定的内存资源下在速度和精准度之间权衡。Faiss专注于压缩原始向量的方法,因为这是扩展到数十亿向量数据集的不二之选:当必须索引十亿个向量的时候,每个向量32字节,就会消耗很大的内存。

  许多索引类库适用于百万左右向量的小规模数据集,比如nmslib就包含了一些适于这种规模数据的非常高效的算法,这比Faiss快很多,但需要消耗更多的存储。

  评估精度基于Deep1B,这是一个包含10亿图片的数据集。每张图片已通过CNN处理,CNN激活图之一用于图片描述。比较这些向量之间的欧氏距离,就能量化图片的相似程度。

  Deep1B还带有一个较小的查询图片集,以及由算法产生的真实相似性搜索结果。因此,如果运行一个搜索算法,就能评估结果中的1-recall@1。

  为了评估,我们把内存在30G以内。这个内存约束是我们选择索引方法和参数的依据。Faiss中的索引方法表示为一个字符串,在本例中叫做OPQ20_80,IMI2x14,PQ20。

  该字符串包含的信息有,作用到向量上的预处理步骤(OPQ20_80),一个选择机制(IMI2x14)表明数据库如何分区,以及一个编码组件(PQ20)表示向量编码时使用一个产品量化器(PQ)来生成一个20字节的编码。所以在内存使用上,包括其他开销,累计少于30G。

  选好了索引类型,就可以开始执行索引过程了。Faiss中的算法实现会处理10亿向量并把它们置于一个索引库中。索引会存在磁盘上或立即使用,检索和增加/移除索引的操作可以穿插进行。

  当索引准备好以后,一系列搜索时间参数就会被设置来调整算法。为方便评估,这里使用单线程搜索。由于内存消耗是受限并固定的,所以需要在精确度和搜索时间之间权衡优化。举例说来,这表示为了获取40%的1-recall@1,可以设置参数以花费尽可能短的搜索时间。

  幸运的是,Faiss带有一个自动调优机制,能扫描参数空间并收集提供最佳操作点的参数;也就是说,最可能的搜索时间对应某个精确度,反之亦然,最优的精确度对应某个搜索时间。Deep1B中操作点被可视化为如下图示:

  本图中我们可以看到,达到40%的1-recall@1,要求每次查询耗时必须小于2ms,或者能优化到耗时0.5ms的线 QPS的处理能力。

  GPU实现方面也做了很大的投入,在原生多GPU的支持下能产出惊人的单机性能。GPU实现已经可以作为对应CPU设备的替代,无需了解CUDA API就能挖掘出GPU的性能。Faiss支持所有Nvidia 2012之后发布的GPU(Kepler,计算能力 3.5+)。

  我们把roofline model作为指南,它指出应当尽量让内存带宽或浮点运算单元满载。Faiss 的GPU实现在单GPU上的性能要比对应的CPU实现快5到10倍,像英伟达P100这样的新型Pascal架构硬件甚至会快20倍以上。

  对于近似的索引,使用YFCC100M数据集中的9500万张图片,一个基于128D CNN描述符的k近邻图(k=10),只需4个Maxwell Titan X GPU就能在35分钟内构建完成,包括索引构建时间。

  十亿级向量的k近邻图现在触手可及。基于Deep1B数据集,可以构建一个 k-NN图(k=10),达到0.65的10-intersection,需要使用4个Maxwell Titan X GPU花费不到12小时,或者达到0.8,使用8个Pascal P100-PCIe GPU消耗不到12小时。Titan X配置可以在不到5小时生成低质量的图。

  其他组件也表现出了骄人的性能。比如,构建上述Deep1B索引需要使用k均值聚类 6701万个120维的向量到262,144个簇,对于25 E-M迭代需要在4个Titan X GPU(12.6 tflop/s)上花139分钟,或者在8个P100 GPU(40 tflop/s)上花43.8分钟。注意聚类的训练数据集并不需要放在GPU内存中,因为数据可以在需要时流到GPU而没有额外的性能影响。

  Facebook AI研究团队2015年就开始开发Faiss,这建立在许多研究和大量工程实践的基础之上。对于Faiss类库,我们选择聚焦在一些��础技术方面的优化,特别是在CPU方面,我们重度使用了:

  对于前述相似性搜索的GPU实现,k-selection(查找k个最小或最大元素)有一个性能问题,因为传统CPU算法(比如堆查找算法)对GPU并不友好。针对Faiss GPU,我们设计了文献中已知的最快轻量k-selection算法(k=1024)。所有的中间状态全部保存在寄存器,方便高速读写。可以对输入数据一次性完成k-select,运行至高达55%的理论峰值性能,作为输出的峰值GPU内存带宽。因为其状态单独保存在寄存器文件中,所以与其他内核很容易集成,使它成为极速的精准和近似检索算法。

  大量的精力投在了为高效策略做铺垫,以及近似搜索的内核实现。通过数据分片或数据副本可以提供对多核GPU支持,而不会受限于单GPU的可用显存大小;还提供了对半精度浮点数的支持(float16),可在支持的GPU上做完整float16运算,以及早期架构上提供的中间float16存储。我们发现以float16编码向量技术可以做到精度无损加速。

  简而言之,对关键因素的不断突破在实践中非常重要,Faiss确实在工程细节方面下了很大的功夫。

  Faiss使用C++实现,并支持Python。只要从Github下载源码并编译,然后在Python中导入Faiss模块即可开始使用。Faiss还完整集成了Numpy,并支持构造numpy(使用float32)数组的所有函数。

  Faiss(包括C++和Python)提供了索引Index的实例。每个Index子类实现一个索引结构,以说明哪些向量可被加入和搜索。比如,IndexFlatL2是一个能使用L2距离搜索的索引。

  这样会打印出索引向量的数量。增加到一个IndexFlat仅仅表示拷贝它们到索引的内部存储,因为后面没有其他操作会作用在该向量上。

  对于xq的第一个向量,xb中最相似向量的索引是0(从0开始),第二相似的是 #393,第三是 #363。对于xq的第二个向量,相似向量列表是 #1, #555 等等。本例中,xq的前三个向量看起来与xb的前三个向量一样。

  Faiss实现了十多个由其他索引组合的索引类型。可选的GPU版本有完全相同的接口,并有通道在CPU和CPU索引之间互通。Python接口主要由C++生成以凸显C++索引,所以可以很容易地将Python验证代码转换为集成的C++代码。

  

关键词:word开源类库
0
0
0
0
0
0
0
0
下一篇:没有资料

相关阅读

网友评论 ()条 查看

姓名: 验证码: 看不清楚,换一个

推荐文章更多

热门图文更多

最新文章更多

关于联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 人才招聘 - 帮助

CopyRight 2002-2012 技术支持 源码吧 FXT All Rights Reserved

赞助合作: